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The present paper continues a previous article [1] where multiobjective optimization of a polymerization
process was approached with a classical method - sequential quadratic programming. In this article, an
optimization method based on genetic algorithms is used for the free radical polymerization of methyl
methacrylate. The influence on the optimization results of the main parameters (the size of the initial
population, the number of generations, recombination rate, mutation rate), as well as that of different
variants of genetic algorithms (different ways of recombination, mutation and selection) is studied. The
main conclusion of the article is that these values and methods depend on the studied process, but also
inter-condition each other, such that the optimization results are rather more correlated with the overall set
of values considered. Thus, we try to establish some directions to guide the search for optimal values.
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Most real-word engineering optimization problems are
multiobjective in nature, since they normally have several
(possibly conflicting) objectives that must be satisfied at
the same time.

It is well known that batch free radical polymerization
is inherently a multivariable control design problem. In
order to obtain a polymeric material with pre-specified
molecular weight and other important properties, one
should manipulate at least two variables: initiator or
monomer addition policy and reactor temperature. If only
one property is controlled by only one manipulated
variable, other properties might deviate from their desired
values during the reaction. This undesirable picture
certainly will impair the final end use of the manufactures
polymer [2].

For multi-objective optimization, the objective function
can be formulated as a vector function whose elements
represent the objectives functions [2-4] or as a single scalar
objective function that combines all identifiable
performance measures with appropriate weighting factors
[5,6].

Computer-aided optimization methods have been
widely employed in chemical process industries.
Traditional optimization methods can be classified into two
distinct groups: direct and gradient-based methods. Deb
[7] emphasizes some common difficulties with most of
the traditional direct and gradient-based techniques: 1) the
convergence to an optimal solution depends on the chosen
initial solution; 2) most algorithms tend to get stuck to a
sub-optimal solution; 3) an algorithm efficient in solving
one optimization problem may be not efficient in solving a
different optimization problem.

Inrecent years, there is a growing interest in optimization
techniques based on evolutionary algorithms, particularly
genetic algorithms. Because of their flexibility, ease of
operation, minimal requirements and global perspective,
these algorithms have been successfully used in a wide
variety of multiobjective problems [8]. Multiobjective
optimization of the polymerization processes is an example
of their applications [3-5, 8-10]. These techniques do not
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need any initial guesses and converge, in the most cases,
to the global optimum even when there are several local
optima present. In addition, genetic algorithms use
information about the objective function and not its
derivatives (such traditional optimization techniques), nor
does they require any other auxiliary knowledge about the
process [4]. Different types of genetic algorithm and their
applications in chemical reaction engineering, including
polymerization processes, are described in some review
works [11-14].

In the first part of the cycle entitled “Multiobjective
optimization of a free radical polymerization” [1], the
optimization problem of methyl methacrylate free radical
polymerization is solved using a traditional method,
sequential quadratic programming, respectively,
implemented in Matlab with pre-defined function fmincon.

In the present paper, which is the second part of the
study, the influence of the parameters of a standard genetic
algorithm on the optimization results of the methyl
methacrylate (MMA) polymerization process is studied.
Also, different types of genetic algorithms are developed,
with different variants for the algorithm phases, in order to
design the most suitable optimization methodology for the
studied process. The article especially addresses the
establishment of a general strategy for solving a
multiobjective optimization problem using genetic
algorithms.

Genetic algorithms

Genetic Algorithms (GA) are a family of computational
models inspired by natural evolution, in which the fittest
species survive and propagate while the less successful
tend to disappear. These algorithms encode a potential
solution to a specific problem on a simple chromosome-
like data structure and apply recombination operators to
these structures so as to preserve critical information.

The chromosomes in GA are similar to biological
chromosomes, as their genes reflect different aspects of
the solution. Chromosomes consist of genes, blocks of
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DNA. Each gene will produce a particular protein that will
shape a certain trait. Possible variations of a gene are called
alleles. Each gene has its own position in the chromosome;
this position is called a locus. The complete set of genetic
material (all chromosomes) is called the genome.

An implementation of a genetic algorithm begins with
a population of (typically random) chromosomes. One then
evaluates these structures and allocates reproductive
opportunities in such a way that those chromosomes which
represent a better solution to the target problem are given
more chances to “reproduce” than those chromosomes
which are poorer solutions. According to the evolutionary
theory, only the most suited elements of a population can
survive and generate offspring, thus transmitting their
characteristics to new generations. The heredity is
enclosed in the chromosomes of individuals represented
in an optimization problem by a specific numerical (often
binary) code. The suitability of each element according to
the optimization problem under consideration is evaluated
via a fitness value directly derived from the objective
function.

In a broader usage of the term, a genetic algorithm is
any population-based model that uses selection and
recombination operators to generate new sample points
in a search space. Unlike other methods, evolution is nota
directed process, but a heuristic one, in which the purpose
of the individuals is to compete in order to propagate their
genetic material to the next generation. In the biological
case, the fitness of an individual results from its interaction
with the environment. Genetic algorithms use a fitness
function instead to compute how close a potential solution
is to the desired solution.

The three fundamental procedures in a typical genetic
algorithm are selection, crossover and mutation. The cycle
of evolution is generally repeated until a predefined
number of generations is reached.

The selection establishes the way in which parents will
be chosen for the offspring that will form the next
generation. In this phase, the fitness of all the individuals
in the population is evaluated. The individuals with higher
fitness must have more chances to reproduce. For each
individual to be created in the next generation, two parents
are thus selected.

Crossover is the operation that ensures the genetic
diversity of the population. After two parents have been
selected, their chromosomes are combined to produce an
offspring. In nature, crossover occurs when corresponding
chromosomes of a parent exchange genetic material by
breaking and reuniting of DNA molecules. In this case, each
parent has two strings of chromosomes (the double helix),
and one string from a parent is combined with one string
from the other. In GA, an individual has only one set of
chromosomes. Thus, the chromosome of the offspring is
built by taking different parts of the parents’ chromosomes
and binding them together. There are many variants for
performing this operation, which largely depend on the
problem.

After crossover, a small change in the chromosome of
the offspring can be applied. The importance of this
operation - mutation - is still a matter of debate. It is
believed that its role is to get the system out of local
extremes or to accelerate convergence, although genetic
algorithms do not need differential functions and gradient
descendent methods for convergence.

The first generation is randomly generated. Then, using
the above operations, a new population is created. The
old population is abandoned and the subsequent
generation is produced using the new population. There
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is no theoretical reason for this clear distinction between
generations. This restriction is only an implementation
model that simplifies the computation. In order not to lose
good solution during the search, sometimes an elitism
procedure is employed, i.e. the best individuals from the
old population are directly copied into the new one. That
ensures that the overall solution of the GA will not get
WOrse.

The process is repeated until a convenient solution is
found. Normally, the best (fittest) individual of its generation
represents the solution given by the genetic algorithm at a
certain moment.

Figure 1 summarizes the stages of a GA procedure.

[ o= )

Randomly generate the initial population P

Estimate the fitness of the individuals

Y
Select 2 parents according to their fitness

.

Create a new individual by crossover, using
crossover probability

4
Adjust the new individual by mutation, using
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Include the individual into the new population P'

Size of the population
reached

i Copy best individuals from the old population P l
i to the new population P* (elitism)

Copy the new population to the old population
P=P

Maximum number of
generations reached

Display solution -
the individual with the best fitness

W )

Fig. 1. General flowchart of a genetic algorithm
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Although GA's highly rely on stochastic processes
(selection, crossover, and mutation are performed with
certain probability rates), they are not random searches.
The evolutionary mechanisms have definitely better results
than random exploration, and these results are achieved
with faster convergence.

Description of the GA model

In our GA model, we used real value encoding for the
chromosomes. There are other approaches for MMA
polymerization using binary solution representation [9], as
itis the simplest type of encoding, in which chromosomes
are composed only of 1's and 0’s. Even the number of
alleles is thus rather small (two), this encoding is very
common, because it is very easy to use. However, value
encoding is more general, because genes are real
numbers. Some experiments [15] have shown that real
value encoding is more time efficient, with better precision
of the solutions.

Our optimization tests are based on some variants of
GA resulted from different methods for selection, crossover
and mutation.

Selection

Variant 1: Roulette wheel selection

One of the most common selection types is the roulette
wheel selection. In this strategy, the parents are selected
proportionally to their fitness. The probability of an
individual i to be chosen is:

XF; @)

where s the fitness of individual i and n is the number
of individual in the population. Since roulette wheel is
basically a stochastic process, there is a good chance that
the individual with best fitness is selected both as mother
and father. Thus, in order to diminish the loss of genetic
diversity, one can impose that the two parents be different
individuals.

Variant 2: Rank selection

The roulette method of selection will have problems
when the fitnesses differ greatly. For example, if the best
chromosome fitness is 90 % of the entire roulette wheel
then the other chromosomes will have a slim chance of
being selected. Rank selection first ranks the population
and then every chromosome receives fitness from this
ranking. The worst will have fitness 1, second worst 2 etc.
and the best will have fitness n (number of chromosomes
in population).

The probability of an individual i to be chosen is now:
R;
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where R, is the fitness rank of individual i in the population.

Variant 3: Tournament selection

Both the roulette wheel and the rank selection have the
disadvantage of being computationally expensive (the
population must be sorted in some way in order to obtain
their ranks and some linear complexity O(n) processing
must be made to compute the sum of fitnesses or ranks).
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In general tournament selection, m individuals are selected
at random from the population and the fittest of them is
selected. The most common type of tournament selection
is binary tournament selection, where just two individuals
are selected to produce a child.

Crossover
Arithmetic real value crossover produces a linear
combination of the parents. Given a uniform random
numberr [J1[0,1],
C=r-M+(l-r)-F (3)
or
C=r-F+(l-r)-M 4)

where C is the real value chromosome of the child, and M
and F are the chromosomes of the parents.

Variant 1. crossover with the same point for all genes

If we imagine the individuals as point in an n-
dimensional space of the features produced by the genes,
acrossover with the same point generates a new individual
on the line segment that links the two parent points. This
means that the r above is the same for all genes. Therefore,
the offspring will be like its parents to the same extent for
all its features.

Variant 2; crossover with different points.

In this case, the new individual will no longer be on the
line segment that links its parents. The r value is different
for every gene. The offspring will look more like one parent
regarding a feature and less regarding another.

Mutation
Variant 1: fine tuning

After a new individual has been created, a mutation is
performed on it. Given the chosen solution encoding, a
uniform mutation can be employed, that randomly
changes a gene to a uniform random value from an interval:
X', =U(min, max). The interval we used was [0.95,x,, 1.05x]
where x represents the current value of the gene. We did
not use absolute boundaries for the interval in order not to
constrain this genetic operator.

In this way, the individual is “shaken” a little; after the
mutation it receives a gene value close to the one obtained
by crossover. Thus catastrophic mutations are avoided, that
totally change a gene value. This method performs a “fine
tuning” of the gene value, and thus an individual close to
the optimal solution will not be taken out of that area in
the solution space. Each gene is altered by a maximum of
10 % of its initial value.

Variant 2: resetting

This method is the conceptual opposite of the previous
variant. A gene value is reset to arandom value in its search
interval. The purpose is to refresh the search process, in
case when the genetic diversity of the population decreases
(so no longer converges to the solution) or the algorithm
has converged into a local optimum. Each gene is
independently considered, and mutation gives it a new
random value in the initialization interval. Only some genes
change (possibly all, but unlikely).

In this paper, we develop software for the different
genetic operators described above. The optimization
results obtained for each situation were compared in order
to choose the best variant according to the process under
study.
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Formulation of the optimization problem
The mass balance equations give the following set of
ordinary differential equations:
d
7? = f(zut) 2(ty) =2z, ©)
where z(t) is the state variable vector defined, for bulk
polymerization, by

z=[L x, Ao, A1, 2 o, t1, 2] (6)

In equation (6), | represents the concentration of the
initiator, x is the monomer conversion and A, and , (k=
0,1,2) are moments of chain length for radicals and “dead
polymer, respectively.

The control variable vector is u(t), with temperature and
initial concentration of the initiator as components:

u(®) = [T}, Ty, T3, I] @)
An admissible control input u*(t) should be formed in

such a way that the performance index J, defined by the
following equations, is minimized:

2
‘ DP,;
Min J[u@®] =w, -ty +wg Qr +wy-(1=X7)+Wppy [ DP J
nd
. ©)
subject to:
dz/dt = flz,u,) ©
(10)

Umin —< u(t) < Umax.

where number average polymerization degree is defined
DPn — ﬂ'] +lul
Ao + 1o

(12

xf=x(tf) and DP"f:DPn(tf)

In the above equation, J is the objective function to be
minimized, w are weighting factors, Q is the polydispersity
index, X, and DP ¢ are desired values of monomer
conversion and number average chain length att =
and DP _ are the actual values corresponding to the f’lnai
reaction time t.

An |mportant objective for the polymerization system is
the minimization of the final reaction time, which leads to
higher productivity. The other objective included in the
same function is the minimization of the polydispersity
index of the polymer product. This ensures good physical
properties of the polymer manufactured. The maximization
of monomer conversion forces the amount of unreacted
monomer to be small, and hence keeps post-reactor
separation and recycling costs low. The endpoint
requirement on DP_leads to the production of polymer
having desired propertles because several physical
properties of polymers are related to their values of DP .

Many authors suggest the use of vectorial objectlve
functions, which leads to obtaining more solutions, each
“specialized" on a certain criterion. While this approach
has the benefit of emphasizing the equilibrium regions of
the decision space, eventually it is the user who must
decide to choose an appropriate solution, if the problem
requires a single result. In our case, the user must take
into account several technological criteria. Using a scalar
function with user-chosen objective weights proves to be
a more simple approach, better suited for our GA based
investigation.

Results and discussions

Population size, number of generations, crossover
probability and mutation probability are known as the
control parameters of genetic algorithms. The values of
these parameters must be specified before the execution
of GA and they depend on the nature of the objective
function.

There is no general termination criteria for GA.
Predetermined number of generations or time or
comparison of the best solutions to average fitness may
be taken as stopping criterion. In our work, the number of
generations is established before running.

Table 1
THE INFLUENCE OF THE INITIAL POPULATION DIMENSION UPON OPTIMIZATION RESULTS
No. lo T X t Q DP, Objective Observations
(mol/ m®) (°C) (min) function
1 15.6 61.4 0.46 117 2.41 3961 | 8.22662 dim=20
85 0.85 121
36.5 0.90 400
2 18.8 45.9 0.40 382 2.81 | 10391 | 9.97335 dim=50
63 0.80 395
62.3 0.85 400
3 34.5 43.5 0.41 388 2.69 | 8238 |10.0584 dim=100
62.4 0.78 400
72.2 0.80 400
Table 2
THE INFLUENCE OF THE NUMBER OF GENERATIONS UPON OPTIMIZATION RESULTS
No. lo T X t Q DP, Objective Observations
(mol/ m3) (°C) (min) function
1 16.9 62 0.43 115 2.45 | 3872 | 8.5214 dim=20
79 0.80 119 gen=15
35.2 0.88 400
2 15.6 61.4 0.46 117 2.41 | 3961 | 8.22662 dim=20
85 0.85 121 gen=30
36.5 0.90 400
3 26 93.6 0.33 8 2.62 375 | 8.30637 dim=20
111 0.92 13 gen=50
74.2 0.93 44
4 20.5 42.6 0.23 376 3.36 | 3984 | 11.5804 dim=20
73.2 0.75 399 gen=100
81.2 0.85 400
132 MATERIALE PLASTICE ¢ 44 ¢ Nr.2 ¢ 2007




A good process model is a necessary prerequisite for
application of the optimal control strategy. Consequently,
the kinetic model has been validated by experimental runs
of bulk polymerization in a wide range of operating
conditions. Our previous works [17, 18] present good
agreement between simulation results and experimental
data for the kinetic model developed for batch MMA
polymerization.

The polymerization process is conducted in a fixed time
0f 400 s, in a perfect mix batch reactor. Limit ranges for the
reaction temperature, T, and the initiator concentration
feed, I, are established based on experimental data: 40°C
< T<"90°C and 10 mol/m® < | < 50 mol/me.

The GA based optimization (t)echnlque is implemented
in Matlab with original software, as specific functions were
programmed for each phase of the genetic algorithm.
Figure 1 presents an outline of the algorithm. At each step
of the optimization procedure, model equations are
integrated using a special function for solving stiff
differential equation, odel5in Matlab 7.0. Integration leads
to conversion, number and weight average molecular
weight histories fort <ts<t.

In order to watch'the influénce of the GA parameters
on the optimization results, in the objective function (8)
we consider w, = 0and W, =0, i.e. we try to maximize
conversion and minimize trhe polydlsperS|ty index. By
decreasing the number of objectives which should be
simultaneously accomplished, we focus on the relationship
between the values of parameters of the genetic algorithm
and the optimization results.

The tables that show the results of the optimizations
contain the following columns: the current number, the
values of decision variables, 1, and T (three values for
temperature, T, T,, T,), conver5|on X, time, t, in minutes,
polydispersity mdex Q number average polymenzatlon
degree, DP_(all these resulting from solving the model in
the conditions |,» T established through the optimization
procedure), the “alue of the objective function, J, and an
observation column where the GA parameters or methods
are mentioned. In an optimization, three values are shown
for conversion and time. The first two represent the values
corresponding to the intermediate steps of temperature,
and the last — the value obtained at the end of the reaction,

when using optimal parameters. On each row (in each
optimization), the final results are marked by bold
characters, representing the objectives of the optimization
and the optlmal values of decisions variables (T, | ). Also,
particular cases of the objective function are included in
the tables, by assigning zero values to the weights of some
objectives.

The weights used in optimization, according to the
discussions and tests in [1], are: w, = 10, w, = 3.

Tables 1and 2 contain optlmlzatlons madewith different
values of the GA basic parameters, i.e. the dimension of
the initial population (dim) and the number of generations
(gen). The selection method is the rank selection, and for
crossover and mutation, the variants marked as 1 in the
section that describes the GA are used. Other values being
used are: the crossover rate (cross) = 0.8, the mutation
rate (mut) = 0.03, and the number of generations (gen) =
15

GA research showed that the solution improves as the
number of individuals in the population increases, but only
up to a point. Beyond that, a larger population decreases
the convergence speed of the algorithm, without leading
to an improvement of the solution. In table 1, the value of
20 for the initial population size leads to the smallest value
of the objective function and to acceptable values of the
partial objectives, while trying to achieve a big conversion
and a small polydispersity index. Thus, in optimization
marked as 1 in table 1, with || = 15.6 mol/m*and T = 61. 4,
85, 36.5°C (T, <T,> T) a final conversion of 0.90 and a
polydlspersny indéx of 2.41 are achieved.

With the increase in the number of generations, the
execution time increases. Since the GA is an iterative
procedure, the quality of the solution should increase with
the number of generations, especially if elitism is used,
which guarantees the fact that the solution will not worsen
over time. But for each parameter and process there is a
limit beyond which there are no more improvements of
the results. As table 2 shows, for MMA polymerization, a
number of 30 generations (gen=30) is sufficient to provide
acceptable results. In other words, the increase of the gen
parameter beyond this limit does not improve the solution,
but surely increases considerably the solving time.

Table 3
THE INFLUENCE OF THE CROSSOVER RATE UPON OPTIMIZATION RESULTS
No. lo T X t Q DP, Objective Observations
(mol/ m3) (°C) (min) function
1 18.8 45.9 0.40 382 2.81 | 10391 | 9.97335 dim=20
63 0.80 395 gen=30
62.3 0.85 400 cross =0.6
2 19.8 71.9 0.50 53 2.45 1826 | 8.21527 dim=20
94.7 0.83 55 gen=30
59 0.92 107 cross=0.8
3 14.2 62.8 0.46 110 2.40 4152 | 8.244491 dim=20
84.8 0.84 113 gen=30
35.6 0.90 400 cross =1
Table 4
THE USE OF DIFFERENT CROSSOVER VARIANTS IN THE OPTIMIZATION PROCEDURE
No. lo T X t Q DP, Objective Observations
(mol/ m®) (°C) (min) function
1 19.8 71.9 0.50 53 2.45 | 1826 | 8.21527 dim=20
94.7 0.83 55 gen=30
59 0.92 107 cross=0.8
crossover variant 1
2 27.6 101.3 0.88 11 3.19 | 443 | 9.86025 dim=20
57.8 0.95 400 gen=30
48 0.97 400 rata=0.8
crossover variant 2
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The crossover rate (cross) represents the probability
with which from two parents a new individual is generated.
If the rate is small, there are high chances that one of the
parents to be directly copied into the new population. Since
crossover is the basis of the search process, a rate close to
1 should increase the speed of finding a solution. Copying
a parent into the new population is beneficial only when it
has a high fitness value (the elitism achieves this objective
in order not to lose the best solutions). Table 3 motivates
the choice of the 0.8 rate, based both on partial objectives,
and on the minimum value of the objective function.

Table 4 uses the established values for the GA
parameters and tests the two crossover variants, numbered
1 and 2, described in the previous section. From the
objective function point of view, variant 1 leads to a lower
value, therefore mathematically the results can be
considered better. Regarding the proposed objectives, a
better value for the polydispersity index is obtained with
variant 1 (2.45 compared to 3.19), and a grater value for
conversion is obtained with variant 2 (0.97 compared to
0.92). Variant 2 has a different thermal regime from those
presented in previous tables (T, < T, >T,), i.e. a thermal
regime formed of increasing temperature steps (T, <T,<
T,). Comparing the results of the two optrmrzatrons in taf)le
4 emphasrzes the role of the user in choosing the solution
based on technological reasons, depending on the
objective which is considered with priority.

The next tests (table 5) contain different values for the
mutation rate (mut). In addition, in some simulations the
werght of the conversion was increased from w =10to

=20, in order to force the obtaining a higher conversion.

Increasrng the mutation rate to 0.05 (optimization 5) and
using the variant 1 for mutation yielded the best values for
the proposed objectives, i.e. a final conversion close to 1
and arather low polydispersity index of 2.65. The conditions
provided by the values of the decision variables correspond
to a thermal regime formed of high temperatures, with
increasing values, and a lower value of the initiator
concentration. One can notice the short reaction time (32
minutes) and a small value of the polymerization degree,
due to high values of the temperature. The objective

function has the lowest value as well, compared to previous
optimizations. In improving the optimization results, the
increase of the mutation rate had a considerable influence.

Comparisons between the two mutation variants
marked 1 and 2 are given in table 6. The optimizations are
compared two by two, i.e. 1 with 1’, 2 with 2’ etc. One can
notice that the general principle of multiobjective
optimization (with more contradictory objectives) is
respected: improving an objective leads to the worsening
of another. Thus, the increase of conversion leads to the
increase of polydispersity index. In addition, one must take
into account the influence of weights, which determine
the priority of achieving a certain objective by increasing
their corresponding values. Variant 1 for mutation better
balances the two objectives, by associating high
conversions with rather small values of the polydispersity
index.

The selection operator that decides which of the
individuals of a population will be able to participate in
forming the next population has an important role within
a genetic algorithm. The goal of selection is to ensure more
chance of reproduction to the fittest individuals and thus
maximizing the performance of the new individuals, and
eventually of the whole population.

The simulations presented in the previous tables were
made using the rank selection. With the best values of the
GA previously established, different selection methods are
tried. In table 7 one can see better optimization results using
rank selection.

In the following, we consider the objective function (8),
where w,, =50, w, = 10° and DP _, = 1800. This means
more objectrves to be met srmultaneously Table 8 presents
optimizations made with a GA where the mutation and
selection methods are changed. From the mathematical
point of view (the minimization of the objective function),
optimization 1 is the best. The user’s decision can take
into account a certain preferred objective. For example,
the best value for conversion is achieved in optimization
4, the smallest polydispersity index in optimization 1, DP_
closest to DP ,in optimization 3, and the shortest reaction
time in optrmrzatron 2.

Table 5
THE INFLUENCE OF THE MUTATION RATE UPON OPTIMIZATION RESULTS

No. lo T X t Q DP, Objective Observations
(mol/ m3) (°C) (min) function
1 15.6 61.4 0.46 117 2.41 | 3961 | 8.226622 | dim=20
85 0.85 122 gen=30
36.5 0.90 400 w,=10
cross=0.8
mut=0.01
2 24,7 55.8 0.38 146 2.74 | 3546 | 9.139093 [ dim=20
77.1 0.81 154 gen=30
56.8 0.91 209 w,=10
cross=0.8
mut=0.03
3 20.5 62.7 0.42 94 2.43 | 2674 | 10.123701 | dim=20
86.2 0.85 99 gen=30
37.7 0.91 400 Wy=20
cross=0.8
mut=0.03
4 17.3 65.1 041 84 2.58 | 2587 | 9.512288 | dim=20
87.5 0.81 89 gen=30
46.9 0.91 143 W,=20
cross=0.8
mut=0.04
5 12 94.6 0.33 12 2.65 | 608 | 8.017003 | dim=20
96.1 0.41 14 gen=30
114 0.997 32 w,=20
cross=0.8
mut=0.05
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Table 6
THE USE OF DIFFERENT MUTATION VARIANTS IN THE OPTIMIZATION PROCEDURE

83.5 0.82 72
54.3 0.90 126

No. lo T X t Q DP, Objective  Observations
(mol/ m3) (°C) (min) function
1 15.6 61.4 0.46 117 2.41 | 3961 | 8.226622 | dim=20
85 0.85 122 gen=30
36.5 0.90 400 w,=10
cross=0.8
mut=0.01
mutation variant 1
1’ 10.7 57.7 043 174 2.42 | 6184 | 8.40132 dim=20
80.8 0.82 179 gen=30
50.6 0.89 229 w,=10
cross=0.8
mut=0.01
mutation variant 2
2 24.7 55.8 0.38 146 2.74 | 3546 | 9.139093 | dim=20
77.1 0.81 154 gen=30
56.8 0.91 209 w,=10
cross=0.8
mut=0.03
mutation variant 1
2’ 40.7 59.1 047 100 2.58 | 2683 | 8.833824 | dim=20
80.6 0.78 | 103 gen=30
51.5 0.89 162 w,=10
cross=0.8
mut=0.03
mutation variant 2
3 352 74.1 0.43 34 2.46 | 1145 | 9.073308 | dim=20
91 0.85 38 gen=30
39.8 0.92 400 w,=20
cross=0.8
mut=0.03
mutation variant 1
3 46.7 88.6 0.89 17 334 | 580 | 11.04941 | dim=20
49.3 0.89 400 gen=30
54.5 0.95 400 w,=20
cross=0.8
mut=0.03
mutation variant 2
4 17.3 65.1 041 84 2.58 | 2587 | 9.512288 | dim=20
87.5 0.81 89 gen=30
46.9 091 143 w,=20
cross=0.8
mut=0.04
mutation variant 1
4 46.7 83 0.86 22 3,60 | 793 | 11.9728 dim=20
48.1 0.86 400 gen=30
51.7 0.94 400 w,=20
cross=0.8
mut=0.04
mutation variant 2
5 12 94.6 0.33 12 2.65 | 608 | 8.017003 | dim=20
96.1 0.41 14 gen=30
114 0.997 32 w,=20
cross=0.8
mut=0.05
mutation variant |
5 36.8 64.6 0.47 69 2.48 | 2054 | 9.47213 dim=20

gen=30

w,=20

cross=0.8
mut=0.05
mutation variant 2

The examples presented in this paper aim at describing
an optimization approach based on genetic algorithms,
more precisely, a methodology of searching for the
optimum by means of the most suitable GA parameters
and variants.
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Our discussions were focus not the absolute results, but
rather the steps of the GA based optimization strategy. The
user decision in choosing the weights of the objective
function and the optimization results and the technological
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Table 7
THE USE OF DIFFERENT SELECTION METHODS IN THE OPTIMIZATION PROCEDURE

No. lo T X t DP_~ Objective Observations
(mol/ m3) (°C) (min) function
1 12 94.6 0.33 12 2.65 | 608 | 8.017003 | dim=20
96.1 0.41 14 gen=30
114 0.997 32 w,=20
cross=0.8
mut=0.05
mutation variant 1
rank selection
r 12.9 60.7 0.42 129 2.45 | 4961 | 9.929125 | dim=20
80.9 0.81 135 gen=30
46.2 0.87 184 w,=20
cross=0.8
mut=0.05
mutation variant 1
- roulette selection
1” 29.9 76.9 0.46 31 3.14 | 1454 | 11.391942 | dim=20
82.5 0.85 36 gen=30
55.2 0.90 83 w,=20
cross=0.8
mut=0.05
mutation variant 1
tournament select.

Table 8
EXAMPLES OF OPTIMIZATION REALIZED WITH A COMPLEX OBJECTIVE FUNCTION
No. lo T X t DP, Objective Observations
(mol/ m®) (°C) (min) function
1 27.7 78.4 0.85 35 4.27 | 1364 | 14.474469 | dim=20
51.3 0.94 400 gen=30
65.1 0.95 400 w,=20; wq=3;
w=10"%; DP,¢=1500
cross=0.8
mut=0.05
mutation variant |
rank selection
2 38.3 59.6 0.36 88 5.81 | 1522 | 18.5963 dim=20
67.8 0.44 94 gen=30
70 0.95 151 w,=20; wo=3;
w=10%; DP,4=1500
cross=0.8
mut=0.05
mutation variant 2
rank selection
3 41.9 42.8 0.37 374 5.28 | 1680 | 18.145888 | dim=20
76.1 0.50 379 gen=30
76.6 0.93 400 w,=20; wq=3;
w=10"; DP,¢=1500
cross=0.8
mut=0.05

mutation variant 2
roulette selection

4 14.4 40.7 0.12 279
59.7 0.40 362
72.4 0.97 400

6.295 | 1660 | 20.310328 | dim=20

gen=30

wy,=20; wo=3;
w=107; DP,;=1500
cross=0.8

mut=0.05

mutation variant 2
tournament select.

criteria are important elements in an optimization
procedure.

Conclusions

The optimization methods based on genetic algorithms
are flexible, robust, easy to use and usually lead to globally
optimal solutions. More, they do not use initial guesses nor
derivatives of the objective function.

Inthe present paper, a step by step optimization strategy
is presented, in which the most appropriate values of the
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GA parameters are found for the studied polymerization
process. From this point of view, one can underline the
influence of the overall set of parameters (rather than
individual ones) upon the optimal solution. Also, the
parameter values and GA variants can be correlated to
either the value of the objective function or the values
reached by some objectives to be minimized, even if the
objective function has not the minimum value.

The main goal of the study is thus to establish an
optimization methodology based on genetic algorithms,
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designed in different variants. This strategy is quite general
and could be applied to other chemical processes, with
high probability to obtain accurate results.
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