ABOUT INDEXING EDITORIAL BOARD ARCHIVES AUTHOR GUIDELINES SUBMIT PAPER NEWS, EVENTS AUTHOR'S PAGE CONTACT
Materiale Plastice
Cite as: Mater. Plast.
https://doi.org/10.37358/Mat.Plast.1964

OSIM Nr. R102356
ISSN Print 0025-5289
ISSN Online 2668-8220
Materiale Plastice - Latest Issue

Latest Issue >>>
ARCHIVES
   Volume 61, 2024
   Volume 60, 2023
   Volume 59, 2022
   Volume 58, 2021
   Volume 57, 2020
   Volume 56, 2019
   Volume 55, 2018
   Volume 54, 2017
   Volume 53, 2016
   Volume 52, 2015
   Volume 51, 2014
   Volume 50, 2013
   Volume 49, 2012
   Volume 48, 2011
   Volume 47, 2010
   Volume 46, 2009
   Volume 45, 2008
   Volume 44, 2007
   Volume 43, 2006
   Volume 42, 2005
   Volume 41, 2004
   Volume 40, 2003
 
<<<< back

Materiale Plastice (Mater. Plast.), Year 2013, Volume 50, Issue 1,





Cristian Dudescu, Adrian Botean, Mihail HArDAu Thermal Expansion Coefficient Determination of Polymeric Materials using Digital Image Correlation


Abstract:
Applications of digital image correlation (DIC) method to material characterisation has been proven to be a powerful tool for deformations and strain analysis and found widespread use and acceptance in the field of experimental mechanics. This paper describes the potential, accuracy and limitations of a commercial DIC system to full-field, real-time characterisation of the coefficient of thermal expansion (CTE) of polymeric materials. The topics such as strain calculation procedure and influence of a small rigid body rotation were theoretically described and experimentally verified. A series of measurements was carried out to determine the CTE polypropylene (PP) and polyvinylchloride (PVC) commercial plastics. To check the feasibility of the method an aluminium sample was initially analysed. The measuring set-up developed includes a simple heating device, thermal sensors and a thermo-camera for real-time temperature measurement and monitoring of the sample and a 3D-DIC measuring system. The results revealed that the DIC can be a reliable tool for thermal deformations measurement especially suitable for polymeric materials with a higher CTE. Keywords: digital image correlation, thermal strains, polymeric materials



Issue: 2013 Volume 50, Issue 1
Pages:
download pdf   Download Pdf Article
Creative Commons License
This article is published under the Creative Commons Attribution 4.0 International License


Downloads number: 0
<<<< back
 
  Search Authors
Crossref Member Badge
 DOI  logo
 Gold Open Access | Source=http://www.plos.org/  | Author=art designer at PLoS
Creative Commons License