Influence of Adding Materials in PBT on Tribological Behaviour

CONSTANTIN GEORGESCU*, MIHAIL BOTAN, LORENA DELEANU
“Dunarea de Jos” University of Galati, Faculty of Mechanical Engineering, 111 Domneasca, 800201, Galati, Romania

This paper presents the tribological behaviour of four polymeric materials, polybutylene terephthalate (PBT), PBT + 10% micro glass beads, PBT + 10% polytetrafluoroethylene (PTFE) and PBT + 10% aramid fibers, in order to rank them in dry sliding regime. Tests were done using a block-on-ring module. The test parameters were: the sliding speed was set for 0.25 m/s, 0.50 m/s and 0.75 m/s, respectively, the load and the sliding distance being kept constant (5 N and 5000 m, respectively). There were analyzed the dependence of friction coefficient and linear wear rate on the adding material. Particular wear mechanisms were identified with the help of SEM images.

Keywords: PBT-based materials, PTFE, glass beads, aramid fibers, friction coefficient, linear wear rate

Polymeric materials, including composites, have a short but fruitful history as concerning their manufacturing and tribological applications [1-3], including health care [4, 5] and automotive industries [6].

PBT has been used on industrial scale since the 7th decade of the XXth century [7-9]. Because of the longer sequence of methyl groups in the repeating unit, the chains are both more flexible and less polar than polyethylene terephthalate, leading to lower values for the melting temperature (~224°C) and the glass transition temperature, Tg, (22-43°C), which allows for a fast crystallization when the material is mold, shorter molding cycles with faster molding speed [1, 9, 10]. PBT is appreciated because of its balance of good properties rather than of a few outstanding ones, especially in water (but not in boiling water) and in a highly humid environment, its good chemical resistance in hydrocarbons. It has good mechanical properties (table 1) and excellent electrical properties, but a lower deflection temperature (54°C) under mechanical properties (table 1) and excellent electrical properties. PBT + 10% micro glass beads, PBT + 10% aramid fibers, in order to rank them in dry sliding regime. Tests were done using a block-on-ring module. The test parameters were: the sliding speed was set for 0.25 m/s, 0.50 m/s and 0.75 m/s, respectively, the load and the sliding distance being kept constant (5 N and 5000 m, respectively). There were analyzed the dependence of friction coefficient and linear wear rate on the adding material. Particular wear mechanisms were identified with the help of SEM images.

Keywords: PBT-based materials, PTFE, glass beads, aramid fibers, friction coefficient, linear wear rate

Table 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>The maximum work temperature, [°C]</td>
<td>110...180</td>
</tr>
<tr>
<td>Traction limit, [MPa]</td>
<td>55...65</td>
</tr>
<tr>
<td>Hardness, Shore</td>
<td>90...95</td>
</tr>
<tr>
<td>Thermal conductivity, [W/m·K]</td>
<td>0.25</td>
</tr>
<tr>
<td>Thermal expansion coefficient, [K⁻¹]</td>
<td>90·10⁻⁵</td>
</tr>
<tr>
<td>Elasticity modulus, [MPa]</td>
<td>3300</td>
</tr>
<tr>
<td>Elongation at yield, [%]</td>
<td>23</td>
</tr>
</tbody>
</table>

* email: constantin.georgescu@ugal.ro; Paper presented at The 3rd International Polymer Processing Conference - IPPC 2013, 7-8 November, Sibiu, Romania
being maintained for 2 h at a constant temperature of 175-180°C.

A triboelement, the prismatic block, was manufactured by cutting parts having the dimensions of 16.5 mm × 10 mm × 4 mm, from the bone samples.

The other triboelement was the external ring of the tapered rolling bearing KBS 30202 (DIN ISO 355/720) [19], having the dimensions of ∅35 mm × 10 mm (fig. 1) and was made of steel grade DIN 100Cr6, having 60-62 HRC and Ra=0.8μm on the exterior surface. The shape and dimensions of the friction couple (Timken type) are presented in figure 1. The aramid fibers were supplied by Teijin (Netherlands), having an average length of 125 μm (fig. 2.b) and the glass beads have diameters in the range of 0.5 μm...40 μm, the most numerous being of 5 μm...10 μm (fig. 2.a).

Tests were done on a CETR tribometer (CETR®-Bruker), using a block-on-ring module. The test parameters were: the sliding speed (0.25 m/s, 0.50 m/s and 0.75 m/s, respectively), the load and the sliding distance being kept constant (5 N and 5000 m, respectively). The dependence of friction coefficient and linear wear rate on the type of adding material was analyzed.

Results and discussions

PBT has the average values of the friction coefficient, μ, in the narrowest range (fig. 3). The local increase of its value could be explained by the elimination of the relatively big wear particles that are characteristic for this polymer [19]. The values are grouped around 0.2 for all tested sliding speeds.

GB10 has the value of friction coefficient scattered on larger intervals (fig. 4). For the sliding speed of v = 0.25 m/s, the abrasive wear is dominant, the polymer being hung (torn) and drawn from the superficial layers as micro-volumes (fig. 3.a). Some of the detached wear particles are transferred on the steel counterface in micro-lamps, non-uniformly distributed on the hard surface (fig. 3.b and fig. 9.b).

Based on the evolution in time of the friction coefficient (fig. 3), the tested materials may be grouped in two categories: two with low values of this parameter (PBT

<table>
<thead>
<tr>
<th>Material symbol</th>
<th>Composition (%wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBT</td>
<td>100% PBT</td>
</tr>
<tr>
<td>GB10</td>
<td>PBT + 10% glass bead + 1.5% PA + 0.5% black carbon</td>
</tr>
<tr>
<td>PF10</td>
<td>PBT + 10% PTFE</td>
</tr>
<tr>
<td>AF10</td>
<td>PBT + 10% aramid fibers + 1% PA + 1% black carbon</td>
</tr>
</tbody>
</table>

Fig. 1. Geometry of the tribotester

Fig. 2. Adding materials

Fig. 3. Friction coefficient for the materials based on PBT

Fig. 4. Ranges of the friction coefficient as a function of sliding speed and material
and PF10) and also with narrow ranges and the other two materials with larger ranges and rough aspect of the lines (GB10 and AF10). If this parameter is the main one in selecting the materials, the neat PBT offers the best choice as the evolution of the friction coefficient is smooth and very low, less sensitive to the sliding speed. The next material with lower and stable friction coefficient is PF10, its good behaviour being the result of the solid lubricant (PTFE).

Analyzing figure 5, one may notice that adding materials into PBT is not always beneficial from tribological point of view. For the lowest tested speed, \(v = 0.25 \) m/s, the smallest linear wear rate was obtained for the neat polymer. The value for AF10 was almost double, but for the other two tested materials (GB10 and PF10), this value is three to five times higher as compared to that for the neat PBT. Adding aramid fibers into PBT makes the blend have a better response to wear, meaning low values of linear wear rate and also a very poor sensitivity with the sliding speed.

The linear wear rate, \(W_l \), is defined as following

\[
W_l = \frac{\Delta Z}{F \cdot L} \quad [\mu m/N \cdot km]
\]

where \(\Delta Z \) is the approach between the two triboelements at the end of the test, \(F \) is the normally applied load and \(L \) is the sliding distance. Because the steel ring could be considered as a perfectly rigid body (as compared to the block material) and the wear of this triboelement could be neglected, this approach would be considered as the linear wear of the polymeric block.

Particular wear mechanisms were identified with the help of SEM images (figs. 6 to 9).

Fig. 5. Linear wear rate of the tested materials, for \(F = 5 \) N and \(L = 5000 \) m

Fig. 6. SEM images of the friction couple PBT and steel

a) Aspect of PBT superficial layer

b) Aspect of steel ring

Fig. 7. GB10 after being tested at \(v = 0.5 \) m/s, \(F = 5 \) N and \(L = 7500 \) m [19]

a) Glass fragments trapped in steel topography

b) Block made of PBT + 10% glass beads

Fig. 8. Zone with an agglomeration of PTFE on the superficial layer of PF10 (with EDX confirmation: see the high percentage of Fluor)

Fig. 9. Test on friction couple AF10 on steel, for \(L = 5000 \) m and \(v = 0.75 \) m/s

a) An aramid fiber bearing the sliding of the metallic triboelement

b) PBT transfer on the steel ring
For PBT, an increase of the wear parameter was noticed when the sliding speed is increased from 0.25 m/s to 0.5 m/s, followed by a decreasing for 0.75 m/s; the cause could be the increase of the weightening factor for abrasive wear when the sliding speed does not change (soften) yet the superficial layers and the absence of a transfer film on the hard surface due to a too low mechanical and thermal loading for initiating and maintaining the adherence process. An almost linear increase of the linear wear rate, when the sliding speed increases, implies an intensification of wear processes without changing their nature.

The linear wear rate of GB10 is insignificantly decreasing when the sliding speed is increasing, W_l being greater for the composite as compared to PBT (a rare case among polymeric composites).

Adding PTFE in PBT caused a slight decrease of the average value of the friction coefficient, but not so obvious as reported in researches of the polymeric blends like PTFE in PEEK [2, 25], where a decrease with 30%...50% as compared to the value obtained for the neat polymer (without PTFE) was reported. In other words, the designer interested in having a low friction coefficient, could select PBT without PTFE additivation, if other required criteria are fulfilled (the thermal regime in functioning, reduced wear, etc.). PF10 (fig. 5) is characterized by a linear wear rate almost insensible of the speed increase. Generally, adding PTFE in a polymer diminishes the wear of the blend. One of the causes would be the generation of a transfer film, even discontinuous, made of a blend of polymer + PTFE. The quality of PTFE dispersion in PBT is very important in reducing wear; for instance, an agglomeration of PTFE will make the tribological behavior uneven worse: high oscillations of the friction coefficient and preferential wear of the zones rich in PTFE (fig. 8.b).

Conclusions

The authors presented test results for PBT used as matrix in composites or blends with different adding materials (glass beads, PTFE and aramid fibers, respectively). Wear behaviour of the obtained materials was pointed out with the help of a block-on-ring tester and the ranking was in the favor of PBT + 10% aramid fibers as the wear parameter was the lowest value and the friction couple has a very poor sensitivity to the variation of the sliding speed (at least for 0.25 m/s - 0.75 m/s).

References

17. BAHADUR, S., Lubrication Engineering. 47, nr. 8, 1990, p. 661.

Manuscript received: 15.09.2014